

In vitro profiling of new antimycobacterial compounds and their peptide conjugates

L. Horváth¹, M. Krátký², Zs. Baranyai¹, B. Biri-Kovács¹, V. Pflégr², B. Szeder³, J. Vinšová² and Sz. Bősze¹

¹MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary

²Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic

³Signal transduction and functional genomics Research Group, Institute of Enzymology, Hungarian Academy of Sciences Research Centre for Natural Sciences, Budapest, Hungary

INTRODUCTION

Tuberculosis is an infectious disease caused by the intracellular bacteria Mycobacterium tuberculosis. These pathogens live and reproduce in their host cells, mainly macrophages. Nowadays, spreading of the drugresistant strains of Mycobacteria is a serious health threat and there is an urgent need for development of novel compounds with no cross-resistance to current therapeutic options. Salicylanilide derivatives have great potential as antimycobacterial compounds¹⁻⁶ with pronounced inhibitory effect against not only *M. tuberculous* (also called atypical) mycobacteria (NTM), like highly chemoresistant *M. avium* and *M.* kansasii.⁷⁻¹¹

synthesized using Fmoc/^tBu strategy.

Amide bond was formed on resin. Oxime bond was formed in liquid phase under acidic conditions.¹¹ Crude products and reaction mixtures were purified using semi-preparative RT-HPLC.

CHEMICAL CHARACTERIZATION OF THE CONJUGATES

(min)

12.4

14.5

14.1

11.9

13.8

13.4

11.8

ppm

0.98

-0.16

0.80

-0.22

-0.35

-1.46

-0.43

Neme		N <i>A</i> *	10 10 100	<i>t</i> ,**			лл *
name	IVI av/mono(calc)	W _{meas} "	ppm	(min)	name	Wav/mono(calc)	<i>WI</i> meas [™]
MK7-Aoa-OT5	912.0002 / 911.4501	911.4505	0.46	14.5	MK8(red)-OT5	735.8282 / 735.3915	735.3922
MK7-Aoa-GFLG-OT5	1286.4344 / 1285.6455	1285.6459	0.33	16.1	MK8(red)-GFLG-OT5	1110.2624 / 1109.5869	1109.586
MK7-Aoa-GFYA-OT5	1350.4766 / 1349.6404	1349.6406	0.18	15.9	MK8(red)-GFYA-OT5	1174.3046 / 1173.5819	1173.582
MK7-Aoa-OT10	1423.6152 / 1422.7619	1422.7614	-0.34	13.9	MK8(red)-OT10	1247.4432 / 1246.7034	1246.703
MK7-Aoa-GFLG-OT10	1798.0493 / 1796.9574	1796.9580	0.36	15.4	MK8(red)-GFLG-OT10	1621.8873 / 1620.8988	1620.898
MK7-Aoa-GFYA-OT10	1862.0915 / 1860.9523	1860.9518	-0.25	15.1	MK8(red)-GFYA-OT10	1685.9195 / 1684.8937	1684.891
MK9-Aoa-OT5	897.9737 / 897.4345	897.4344	-0.09	13.6	MK8(red)-OT15	1759.0581 / 1758.0152	1758.014

IN VITRO ANTIMYCOBACTERIAL EFFECT

MK8(red)-OT15(2dec) 1913.3074 / 1912.1510 1912.1512 0.13 15.3 * Thermo Scientific Q Exactive Focus, electrospray ionization (ESI), Orbitrap analyzer **Exformma EX1600, (Waters Symmetry®, C18, 4.6x150 mm, 100 Å column), gradient: 0-60 B%, 0-10 min; 60-100 B% 10-20 min, 1 ml/min, λ = 220 nm. Eluent A: 0.1% TFA/water (V/V), eluent B: 0.1% TFA/acetonitrile/water 80:20 (V/V)

Retention times of free compounds (red) and (blue) conjugates on phase column. reverse the retention Based on times, lipophilic character of the conjugates can be estimated and compared.¹¹ Free compounds are more lipophilic than conjugates.

IN VITRO INTRACELLULAR EFFECT

In vitro antimycobacterial activity was determined on M. tuberculosis H₃₇Rv bacterial culture using broth dilution method.^{15-19,11} Free compounds and peptide conjugates have antimycobacterial effect.

MK7	40 (122)	24
MK8(red)	1 (4)	8
MK9	0.5 (1.5)	5
MK7-Aoa-OT5	20 (22)	3
MK7-Aoa-GFLG-OT5	40 (31)	14
MK7-Aoa-GFYA-OT5	60 (45)	4
MK7-Aoa-GFLG-OT10	80 (59)	8
MK7-Aoa-GFYA-OT10	80 (62)	28
MK9-Aoa-OT5	5 (6)	7
MK8(red)-OT5	20 (27)	2
MK8(red)-GFLG-OT5	20 (18)	40
MK8(red)-GFYA-OT5	40 (34)	10
MK8(red)-OT10	20 (16)	1
MK8(red)-GFLG-OT10	60 (37)	33
MK8(red)-GFYA-OT10	80 (48)	4
MK8(red)-OT15	20 (11)	0
MK8(red)-OT15(2dec)	20 (11)	6

In vitro intracellular activity was determined on MonoMac6 cells infected with *M. tuberculosis* H₃₇Rv bacteria.²⁰

Free compounds are not effective; while conjugates inhibit the intracellular bacteria in a concentrationdependent manner.

IN VITRO CELLULAR UPTAKE STUDIES

	nomogenate					
c: 50 pmol/µl/ 0.2 M NaOAc buffer	37 °C, 600 rpm Protein content of lysosomal homogenate: conjugate = 1:1 (w/w)	5 min, 1 h, 2 h, 4 h, 8 h, 24 h Sample storage: -80 °C	MK8(red MK8(red)-GF	L	
Lysosomal digestion nattern was determined in rat liver						
Lysosomal digestion pattern was determined in rat liver MK8(red)-G-F						
isosomal nomogenate." Nietabolites were identified using						
high resolution HPLC-MS instrument. Smallest metabolites						
are the conjugable compounds and the first amino acids. 5 min 1 h						

MK8(red)-GFLGT-K-P-K-G-T-K-P-K-G-NH ₂
MK8(red)-G-F-Y-A-T-K-P-K-G-NH ₂
MK8(red)-GFYA-T-K-P-K-G-T-K-P-K-G-NH ₂
5 min 1 h 2 h 4 h

CF-11 CF-TK(dec)	C/	C/	Cha	
6,25	μM	12,5 μM		
In vitro cellular uptake determined using flow	of Cf-lat cytome	beled per try. Cellu	otides was Ilar uptake	
is concentration depe	ndent. li	n compa	arison with	
non-linker containing t	uftsin de	erivatives	s, peptides	
containing linker sec	quences	have	decreased	

Cf-labeled peptides co-localize with lysosmal compartments based on confocal microscopy studies. Treatment: 50 µM, 90 min. blue: nucleus.

CONCLUSION

cellular uptake.

Novel hydroxybenzoic acid derivatives have been designed and synthesized. These compounds were conjugated via oxime and amide bond to tuftsin peptide carriers. The hydroxybenzoic acid derivatives have antimycobacterial effect and this effect remains after conjugation. However, the free compounds lack intracellular bacteria in a concentration-dependent manner. The lysosomal digestion pattern of the conjugates was determined. Smallest metabolites containing hydroxybenzoic acid derivatives are the compounds and the first amino acids. In vitro cellular uptake is concentration dependent. The Cf-labeled peptides co-localize with lysosomal compartments. The compounds have moderate *in vitro* cytostatic effect on hepatocytes and monocytes.

REFERENCES	ACKNOWLEDGEMENTS
 ¹Krátký et al., 2014, ScientificWorldJournal, 703053 ²Krátký et al., 2012, Molecules, 17(1), p492-503. ³Krátký et al., 2012, Molecules, 17(11), p12812-20. ⁴Krátký et al., 2013, Molecules, 18(4), p3674-88. ⁵Krátký et al., 2014, Eur J Pharm Sci, 53, p1-9. ⁶Krátký et al., 2014, Bioorg Med Chem, 22(15), p4073-82. ¹⁴Kopeček et al., US Patent 5,037,883, 1991 ¹⁷Jensen, K. A. Zentralb. Bakteriol Parasitenkd infektionskr hyg Agt I Orig, 1932. p125-222. ¹⁸Löwenstein, E. Zentralb. Bakteriol Parasitenkd infektionskr hyg Agt I Orig, 1931. p120-127. ¹⁹Horváti K. et al., J Pept Sci, 2009, 15, p385-391. ¹⁰Krátký et al., 2010, Eur J Med Chem, 45(12), p6106-13. ⁸Krátký et al., 2015, Bioorg Med Chem, 23(4), p868-75. ¹⁰Krátký et al., 2015, Bioorg Med Chem, 23(4), p868-75. 	 The authors acknowldge the help of Kata Horváti (intracellular activity measurement), Gitta Schlosser and Arnold Steckel (HPLC-MS measurement). Czech Science Foundation, project No. 17-27514Y Ministry of Human Capacities, FIKP, 1783-3/2018/ FEKUTSTRAT VEKOP-2.3.3-15-2017-00020, European Union and the State of Hungary, European Regional Development Fund Foundation for the Hungarian Peptide and Protein Research